土壤中重金属异常组分存在形态

职业培训 培训职业 2025-01-04
为了进一步验证土壤中异常组分存在形态对其生态效应的影响,以黄埔试验区为例开展了异常组分存在形态研究。之所以选择黄埔试验区开展此项研究,是因为该试验区既出现有表层累积型Hg等元素异常又有连续型Cd异常,以此为试验区可同时对两种不同性质的异常进行直接对比。已有研究

为了进一步验证土壤中异常组分存在形态对其生态效应的影响,以黄埔试验区为例开展了异常组分存在形态研究。之所以选择黄埔试验区开展此项研究,是因为该试验区既出现有表层累积型Hg等元素异常又有连续型Cd异常,以此为试验区可同时对两种不同性质的异常进行直接对比。已有研究结果表明,土壤中的水溶态、离子交换态、有机态和铁锰氧化物态组分对农作物的生长发育具有直接或潜在作用。此次研究中着重对重金属元素的这几种存在形态进行了研究,结果如表6-5所示。

按照不同存在形态中元素含量在全量中所占比例由高到低的顺序,土壤中Cd依次为铁锰氧化物态、有机态、离子交换态和水溶态,这一顺序与Pb、Zn、As、Cr等元素基本相同。按上述几个存在形态中不同元素占土壤全量的比例来衡量,Cd在4种相态中含量总和占全量的比例最高,达到了68.9%,其后依次是Zn、Pb、Cu等。Cd存在形态的另一个显著特点是离子交换态Cd含量高,达到15.1%,显著高于其他元素,这暗示了连续型Cd异常的生态效应可能比较敏感。

从离子交换态占全量的比例来看,排在Cd之后的是Zn。不过,离子交换态Zn仅占其总量的0.8%。由于土壤中Zn的含量比较高,占全量0.8%的离子交换态Zn的绝对量已经比较可观了。实际上也是如此,离子交换态Zn的总量在所有元素中是最高的,为1477ng/g,加上807ng/g的水溶态Zn,基本上能够解释清楚黄埔试验区土壤溶液和浅层地下水中Zn含量高的原因了。

表6-5 黄埔试验区土壤重金属元素存在形态含量及比例

注:①样品数N=42;②含量单位,ng/g;③占全量比例,%。

与Cd的情况截然相反,Hg在水溶态、离子交换态、有机态和铁锰氧化物态4种相态中的含量占土壤全量Hg的比例分别是0.49%、0.03%、0.34%、0.03%,4种相态总和仅占全量的1.6%。这表明即便是土壤中Hg含量很高,其活性组分的含量也很小,这与土壤Hg异常内Hg的存在形态密切相关。土壤Hg异常内Hg的存在形态主要是辰砂,由此也就决定了Hg的活性组分含量比例,进而决定了Hg异常的生态效应,包括Hg在土壤溶液和浅层地下水中的含量以及农产品卫生质量。

这里需要强调一点,在土壤-土壤溶液-地下水体系中,元素的迁移、沉淀(吸附)乃至富集行为非常复杂,开展土壤溶液和地下水中重金属元素,尤其是重金属异常组分含量状况调查只是为了探讨土壤中异常组分对水介质中相应组分含量的影响以及影响程度,为探讨农产品卫生质量提供依据。

重金属元素Cd、Hg、As、Pb等为有毒元素,农作物中如果过量累积这些重金属元素,不仅会影响农作物产量,更直接的是会影响其品质,并通过食物链对人体健康和整个生态系统的安全带来危害。农作物对重金属元素的吸收量不只是与土壤重金属的含量水平有关,更取决于重金属元素的存在形态。也就是说,虽然土壤中重金属总量较高,但是若农作物难以吸收利用的存在形态所占比例大,也不会造成农作物的过量吸收;相反,若农作物容易吸收的存在形态所占的比例较大,则元素的生物活性高,它们就会进入到农产品中,导致重金属元素在农产品中的累积,甚至造成农产品中重金属元素含量超标。

各种来源的重金属异常组分进入土壤后,通过物理迁移、化学迁移和生物迁移,与土壤中无机态、有机态的其他组分不断发生相互作用,进行空间位置的迁移和存在形态的转化,经过一定时间后将达到各存在形态之间的平衡,这其间包括多种多样复杂、综合的过程,并且受多种因素的影响。有研究者根据重金属在土壤各相中的分布及其结合特征将土壤中重金属异常组分分为水溶态、离子交换态、碳酸盐结合态、弱有机结合态、铁锰氧化物态、强有机结合态和残渣态7个主要相态。从土壤中实际存在的化合物形态来看就更复杂,以汞为例,土壤中可能存在的无机汞化合物包括HgS、HgO、HgCO3、HgHPO4、HgSO4、HgCl2、Hg(NO3)2和金属Hg,可能存在的有机汞化合物包括甲基汞、二甲基汞、土壤腐殖质与汞形成的配合物和有机汞农药等。据研究,不同相态的Hg化合物被植物吸收的顺序是:氯化甲基汞(CH3HgCl)>氯化乙基汞(C2H5HgCl)>升汞(HgCl2)>氧化汞(HgO)>硫化汞(HgS),这个顺序显然与各种化合物的溶解度相一致,不同存在形态的Hg在农作物中累积的难易程度是不同的。

除土壤重金属元素含量和存在形态会影响农作物的吸收外,不同作物本身吸收特性不同,在对重金属元素的选择性吸收和累积方面也会表现出明显的差异。以Hg为例,不同类型植物对Hg的吸收累积能力是:针叶植物>落叶植物,水稻>玉米>高粱>小麦,蔬菜作物类累积Hg的顺序为根菜>叶菜>果菜,植物不同部位对Hg的累积能力为根>茎叶>籽实。

综合以上试验研究结果不难看出,土壤重金属元素异常的生态效应受多方面因素的影响,实际上是一个非常复杂的过程。对广泛存在的土壤重金属元素异常而言,其生态效应实际要较上述试验研究结论复杂得多,因为这类异常的异常组分存在形态及其形态转变条件更加多样。单纯以土壤中异常组分含量高低为标准判断其生态效应,试验结果会出现许多不确定性,这其中的规律性及其影响需要进行系统的试验研究才能发现和了解。

由于土壤中的重金属元素对农作物可能存在的危害性,在对某一地区土壤重金属元素异常进行评价时,农作物中异常组分食品卫生质量是一项必不可少的指标。在水介质中异常组分含量试验基础上,以农作物食品卫生质量作为评价标准,对土壤重金属元素异常的生态效应及其影响因素再进行系统探讨。

重金属异常区农作物卫生质量状况调查分两个阶段进行。第一阶段是局部典型异常区典型农作物卫生质量调查,该阶段异常区的选择主要考虑异常组分的分布形态即成因类型。第二阶段是区域性重点农作物卫生质量调查,研究区选择除异常组分的分布形态即成因类型以外,还特别考虑了自然景观条件。

标签

版权声明:本文由哟品培原创或收集发布,如需转载请注明出处。

本文链接:http://www.yopinpei.com/20250104/2/1170168

猜你喜欢
其他标签